

RHEUMATOLOGY

MIR-146A AN IMPORTANT KEY PLAYER IN BONE METABOLISM

Victoria Saferding¹, Melanie Hofmann², Julia S. Brunner², Mihaela F. Militaru¹, Antonia Puchner¹, Silvia Hayer¹, Melanie Timmen³, Richard Stange³, Josef S. Smolen¹, Stephan Blüml¹

1, Medical University of Vienna, Austria, 2, Vascular Biology and Thrombosis research, Medical University of Vienna, Austria, 3, Institute for Experimental Muskuloskeletal Medicine, University Hospital Muenster, Germany

Background

Micro RNAs (miRNAs) play a crucial role in the regulation of bone metabolism. MiR-146a, an important anti-inflammatory miRNA, was found to negatively impact osteogenesis and bone regeneration in vitro, by controlling the differentiation of mesenchymal stem cells. But to date the role of miR-146a in bone remodelling, its influence on bone stability and

development of osteoporosis is not known.

A <u>Trabecular and cortical bone volume of</u> MiR-146a^{-/-} animals increases with age

Trabecular bone of miR-146a^{-/-} animals show B different porosity and interconnectivity

A, µCT pictures of trabecular and cortical bone from wild type (wt) and miRNA-146a deficient tibial bone, over an age of 3 to 6 months.

Aged miR-146a deficient animals show activated Osteoclasts as well as Osteoblasts

þg

4

B, μ CT analysis of trabecular bone from wt and miR-146a^{-/-} tibiae (Tb) was done over an age of

3 to 16 month. Shown are Bone volume per Tissue volume (BV/TV), trabecular Porosity

(Tb.Porosity) and Connectivity Density (Conn.D.).

D MiR-146a^{-/-} animals are protected from OVX induced bone loss

D, WT and miR-146a^{-/-} animals were ovariectomized, sham operated animals were used as controls. After four weeks µCT analysis of bone volume per tissue volume (BV/TV), Cortical tickness and Bone mineral density (BMD)

was done.

C, Protein expression level of β-CrossLaps (CTXI) in sera of wt and miR-146a deficient animals was analysed by Elisa. Histological pictures of Calcein labelled trabecular bone of wt and miR-146a^{-/-} animals. Expression level of RUNX2 was assessed in femural bones of wt and miR-146a^{-/-} animals over an age of 3 to 16 months.

Conclusion

MiR-146a seems to control bone turnover and miR-146a deficient mice accrue bone over time. Moreover

this miRNA has a negative influence on bone loss occurring during oestrogen loss induced osteoporosis.

Therefore miR-146a could be possibly used as therapeutic target in the treatment of osteoporosis.